

In-Flight Performance of the TES Loop Heat Pipe Rejection System – Seven Years In Space

Jose I. Rodriguez and Arthur Na-Nakornpanom National Aeronautics and Space Administration Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California, USA 91109

42nd ICES, 15-19 July 2012, San Diego, California

© 2012 California Institute of Technology. U.S. Government sponsorship acknowledged.

Outline

- Brief description of the Tropospheric Emission Spectrometer
- Cryocooler subsystem hardware description
- Cryocooler heat rejection system
- Typical in-orbit performance
- Performance with start-up heater
- Summary

Brief TES Description

- The Tropospheric Emission Spectrometer (TES) is an infrared, high spectral resolution Fourier transform spectrometer with a 3.3 to 15.4 µm wavelength coverage
- TES is a scanning instrument intended for determining the chemical state of the Earth's lower atmosphere (the troposphere) from the surface to 30+km
- TES produces vertical profiles of important pollutant and greenhouse gases such as carbon monoxide, ozone, methane, and water vapor on a global scale every other day
- TES was launched into orbit onboard NASA's Earth Observing System Aura spacecraft on July 15, 2004 from Vandenberg Air Force Base, California

TES Cryogenic Subsystem Design

- The cryogenic subsystem design makes use of active and passive cooling
- A pair of NGAS single-stage pulse tube coolers are used to cool the Mercury Cadmium Telluride (HgCdTe) focal planes to 65K
- Two coolers are required to cool four detectors in two separate focal plane opto-mechanical assemblies separated by about 40cm
- The cooler heat rejection system (HRS) makes use of loop heat pipes (LHPs) and constant conductance heat pipes (CCHPs) to transport the cooler waste heat to the nadir-facing radiators

Pulse Tube Cryocooler Subsystem

Pulse Tube Cryocooler Subsystem with LHP Evaporator

Pulse Tube Cryocooler Subsystem with LHP-based HRS

Cooler Heat Rejection System for Cooler Drive Electronics

Cooler Heat Rejection System for Cooler Drive Electronics (Cont'd)

Cooler Heat Rejection System – LHP Condenser

Cooler Heat Rejection System – Cryocooler LHP Radiator

Cryosystem In-orbit Thermal Performance

- Pulse tube coolers:
 - Provide cooling to focal plane arrays at 65K
 - Drive electronics use closed-loop temperature control to maintain cooler coldtip at 63.5K
 - Four HgCdTe focal plane detector arrays are housed in two separate focal plane opto-mechanical assemblies
- Two weeks after launch water-ice contamination on focal planes led to a significant degradation in science data
 - This led to the need for the 1st decontamination cycle
 - A decontamination cycle requires the coolers to be powered off and the focal plane decontamination heaters to be powered on
 - For each decontamination cycle both coolers are turned off and on which requires the cooler LHPs to turn off and on
 - A decontamination cycle is completed in 48-hrs
 - To date 23 decontamination cycles have been performed successfully
 - Decontamination cycles are now performed every 6-months
 - To date the start-up heaters have only been energized 5 times on cooler B LHP

In-Orbit Performance for Typical Decontamination Cycle Data Set for 6-days

Figure 8. Decontamination cycle 15 - Cryocooler A and B LHP shutdown and startup, A) Cooler A LHP, B) Cooler B LHP, C) Cooler A and B drive levels.

In-Orbit Performance for Typical Decontamination Cycle Data Set for 12-hrs

Figure 9. Decontamination cycle 15 - Cryocooler A LHP startup, A) Evaporator temperature rate of change, B) Superheat, C) Evaporator, compensation chamber and associated radiator.

Figure 10. Decontamination cycle 15 - Cryocooler B LHP startup, A) Evaporator temperature rate of change, B) Superheat, C) Evaporator, compensation chamber and associated radiator.

Decontamination Cycle 16 with Features Data Set for 12-hrs

Figure 11. Decontamination cycle 16 - Cryocooler A LHP startup, A) Evaporator temperature rate of change, B) Superheat, C) Evaporator, compensation chamber and associated radiator.

Figure 12. Decontamination cycle 16 - Cryocooler B LHP startup, A) Evaporator temperature rate of change, B) Superheat, C) Evaporator, compensation chamber and associated radiator.

Cooler LHP Theoretical Transient Response on Power-on

- Cryocooler compressor temperature rate of change on power-on
 - Compressor + LHP evaporator is ~12.2kg
 - Power dissipation at 63% drive level is 40.7W for cooler A (37.7W for cooler B)
 - dT/dt=(40.7J/s)/[(12.2kg)x840J/kg-C)=14.3C/hr for cooler A (14-15C/hr measured)
- Cryocooler electronics temperature rate of change on power-on
 - 2xDrive electronics + LHP evaporator + center plate with two heat pipes is ~15.6kg
 - Power dissipation at 63% drive level is 27.6W
 - dT/dt=(27.6J/s)/[(15.6kg)x960J/kg-C)=6.6C/hr (5.7C/hr measured)
- Cryocooler LHP evaporator temperature rate of increase after power-on is >2X higher than cooler drive electronics LHP evaporator
- The cooler drive electronics LHP evaporator temperature rate of increase on power-on is the lowest of all 5 LHPs

In-Orbit Performance Summary for Entire Mission

Figure 13. On-orbit data summary for entire mission duration: A) Cryocooler off time duration, B) Evaporator temperature prior to cooler shut-down, C) Evaporator temperature after cooler shut-down, D) Radiator temperature prior to cooler shut-down, E) Radiator temperature after cooler shut-down. Note, the filled-in symbols refer to cooler B LHP.

In-Orbit Performance Summary for Entire Mission (Cont'd)

Figure 14. On-orbit data summary for LHP start conditions: A) LHP start time after cooler power on, B) Maximum LHP evaporator temperature at start-up, C) Evaporator temperature rate of change at start-up and peak from cooler power on, D) Superheat at start-up. Note the filled-in symbols refer to cooler B LHP.

Summary

- Water-ice contamination on the detectors led to the need for decontamination cycles which requires the cooler LHPs to turn off and on when power cycling the cryocooler compressors
- All decontamination cycles have been successful due to the thermal design scheme implemented which added start-up heater circuits and bi-metallic thermostats for passive control
- Start-up heaters have been used a total of 5 times by the same LHP with the lowest temperature rate of increase after cryocooler power on
- The LHP-based heat rejection system has performed very well for the entire mission, maintaining the compressors at near 0C and drive electronics near 15C, respectively, with less than a 5C p-p orbital temperature variation
- For almost eight years, the TES instrument has produced exceptional science and is expected to continue for the remainder of the extended 9 year mission

